Skip to main content

Blazars are a kind of highly variable source.

A blazar is an active galactic nucleus, a jet traveling at the speed of light composed of ionized matter, blazers are powerful sources of emission in the electromagnetic spectrum, seen as sources of high energy gamma ray photons. Blazars are a type of highly variable source, often passing over a short period of time, with flashes rapidly and dramatically. And some pulsating jets exhibit apparent motion, in which it travels with the material at a resultant speed of light, towards the observer.

Galaxies that have a compact field at the center, called the active galactic nucleus, are much higher than normal luminosity, even when the electromagnetic spectrum is lower than it is, the compact field shows that stars  Brightness is not produced with. Such additional non-stellar emission has been observed in radio, microwave, infrared, optical, ultra-violet, X-ray and gamma ray waves in the compact region, the area of ​​the compact is called AGN, the galaxies containing agn. They are called "active galaxies".

A new study has shown how active galactic nuclei are increasing the supermassive black hole material at the centers of galaxies, and emitting jets of AGN charged particles. The central black holes, how they transport large amounts of energy, and also radiate in the electromagnetic spectrum.

Blazar jets have two types of peak emission wavelengths, one charged from radio to X-rays, and are the result of charged particle acceleration, and the same particles charged on a very short wavelength, high energy gamma ray band. To collect various types of infrared "seed" photons from other sources.

After the launch of the Compton Gamma Ray Observatory in 1992, a bright explosion of radio emissions was first observed in 1978, during which gamma-ray variability was discovered, and the launch of the Fermi Gamma-Ray Space Telescope Mission 2008 continued  Comments enabled. The variability of Blast CTA102 was monitored from 2013-2017, to study it in depth. CfA astronomer Mark Gurvell and team of astronomers, together, used submillimetric arrays to measure particularly significant short (mm / sub mm) wavelengths, and the electromagnetic spectrum was expanded from radio to gamma rays.

In December 2016, the wavelength was seen to be flaring, which was 250 times brighter than its normal unconscious state. CTA102 entered a new phase of high gamma-ray activity, flaring with emission changes at all wavelengths.  Many detailed physical scenarios were proposed about this phenomenon, one of which was based on the change in geometric orientation of jets.

The researchers noted, in the new paper, that the two emission peaks with different geometric characteristics, originate from two different processes in which the geometric landscape can be tested, the same gamma-ray and optical current,  Similar particles in the jet are generated by the motions. The team of astronomers analyzed all available variability data from 2013–2017, and concluded how an inhomogeneous, rotating jet modified by changes in orientation makes the long-term flow of CTA102 in a simpler way, and the spectral evolution of  Can explain.


Popular posts from this blog

The Esa / Nasa Hubble Space Telescope captured the image of cluster 47 Tucanae.

The Nasa/Esa Habble telescope has captured an image of a group of stars, spherical in shape, spanning a large area, this group of stars has billions of stars, these stars have their own color, which is much about them  It says.  In the image we can see, around 35,000 stars are visible near the center of the cluster 47 Tucanae , the stars are tightly packed near the core (top left) of the cluster, and propagate farther away from the core.

In the cluster image of stars, how stars are shown in natural colors, scientists have told about their composition and age through the color of stars, as the star which appears red, the stars end of their life. Is near, bright red signifies giants, while more common yellow stars indicate that these stars are still young, whose age is similar to our sun.

Cluster 47 Tucanae image taken by Hubble's Wide Field and Planetary Camera 2, this image was taken in 1999.

According to Nasa's report the rules protecting other planets from pollution can be very strict

Some scientists believe that the moon will have an interesting mission to seek life, with scientists also considering it as a potentially interesting site to investigate the origin of life on the Moon. But some scientists say that most of the moon is not astrologically interesting. Some places on the moon, Mars and other planets are safe, while some places are unprotected.  Some policies may be too strict to protect the Moon, Mars and other places.

What was the conclusion of NASA's 12-expert panel To review voluntary international guidelines, to keep space missions polluting other worlds with earthly life. These guidelines are recommendations of the international scientific organization COSPAR, which revised policies for spacefaring countries for decades.  Nasa will send a sample-collection mission to Mars next year, the same other space agency also lunar  Interpretation of preparing the trip, as the scientists, there is an urgent need to update safety guidelines of the planets.  A…

How did life begin on Earth? Is it possible by a violent collision on the moon.

The moon, which has many stories to make, did the violent, and cosmic collision during the making of the moon make life possible on earth? This is a big question, but a new study shows that this is true. Science has given many theories about life on earth, but there is always a question in our mind that how life came to be born on earth.Given by science, has many theories, and tries to explain to us how to find elements for life on our planet: such as carbon and nitrogen elements.
Scientists have previously believed that meteorites have brought life-giving elements to Earth, bacteria with meteorites coming from space for example, and the energy of explosions caused by the continuous fall of meteorites from organic matter.Synthesis of. And the isotopic signatures of these elements on Earth coincide with those objects, but what? The ratio of carbon to nitrogen is not very accurate.If we think of transporting the elements that are important for life on Earth due to meteorites, then each p…